Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus.
نویسندگان
چکیده
The dentate granule cell layer of the rodent hippocampal formation has the distinctive property of ongoing neurogenesis that continues throughout adult life. In both human temporal lobe epilepsy and rodent models of limbic epilepsy, this same neuronal population undergoes extensive remodeling, including reorganization of mossy fibers, dispersion of the granule cell layer, and the appearance of granule cells in ectopic locations within the dentate gyrus. The mechanistic basis of these abnormalities, as well as their potential relationship to dentate granule cell neurogenesis, is unknown. We used a systemic chemoconvulsant model of temporal lobe epilepsy and bromodeoxyuridine (BrdU) labeling to investigate the effects of prolonged seizures on dentate granule cell neurogenesis in adult rats, and to examine the contribution of newly differentiated dentate granule cells to the network changes seen in this model. Pilocarpine-induced status epilepticus caused a dramatic and prolonged increase in cell proliferation in the dentate subgranular proliferative zone (SGZ), an area known to contain neuronal precursor cells. Colocalization of BrdU-immunolabeled cells with the neuron-specific markers turned on after division, 64 kDa, class III beta-tubulin, or microtubule-associated protein-2 showed that the vast majority of these mitotically active cells differentiated into neurons in the granule cell layer. Newly generated dentate granule cells also appeared in ectopic locations in the hilus and inner molecular layer of the dentate gyrus. Furthermore, developing granule cells projected axons aberrantly to both the CA3 pyramidal cell region and the dentate inner molecular layer. Induction of hippocampal seizure activity by perforant path stimulation resulted in an increase in SGZ mitotic activity similar to that seen with pilocarpine administration. These observations indicate that prolonged seizure discharges stimulate dentate granule cell neurogenesis, and that hippocampal network plasticity associated with epileptogenesis may arise from aberrant connections formed by newly born dentate granule cells.
منابع مشابه
Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat.
Aberrant reorganization of dentate granule cell axons, the mossy fibers, occurs in human temporal lobe epilepsy and rodent epilepsy models. Whether this plasticity results from the remodeling of preexisting mossy fibers or instead reflects an abnormality of developing dentate granule cells is unknown. Because these neurons continue to be generated in the adult rodent and their production increa...
متن کاملAberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy.
Neurogenesis in the hippocampal dentate gyrus persists throughout life and is increased by seizures. The dentate granule cell (DGC) layer is often abnormal in human and experimental temporal lobe epilepsy, with dispersion of the layer and the appearance of ectopic granule neurons in the hilus. We tested the hypothesis that these abnormalities result from aberrant DGC neurogenesis after seizure-...
متن کاملThe Effects of Kainic Acid-Induced Seizures on Adult Neurogenesis in the Rodent Dentate Gyrus
Adult neurogenesis occurs in the subventricular zone and the hippocampal dentate gyrus (DG) of the mammalian brain. Research on rodents shows that neurogenesis in the DG increases with seizures (Abrous et al., 2005), a finding that may help reveal the underlying mechanism of temporal lobe epilepsy (TLE). In our experiment, systemic seizures were induced in mice by kainic acid (KA), followed by ...
متن کاملMechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis.
Studies of experimental mesial temporal lobe epilepsy (mTLE) indicate that prolonged seizures in the adult not only damage the hippocampal formation but also dramatically stimulate neurogenesis. Endogenous neural progenitor cells (NPCs) located in the adult rodent dentate gyrus and striatal subventricular zone are stimulated by experimental status epilepticus (SE) to generate increased numbers ...
متن کاملP 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 10 شماره
صفحات -
تاریخ انتشار 1997